Denna webbshop är stängd för köp.
Klicka här för mer information

Zeta Functions for Two-Dimensional Shifts of Finite Type
  • Bandtyp: Häftad
  • Språk: Engelska
  • Utgiven: 20130919
  • Antal sidor: 60
  • ISBN10:0821872907
  • ISBN13:9780821872901

Zeta Functions for Two-Dimensional Shifts of Finite Type

(Häftad)
Beskrivning:

This work is concerned with zeta functions of two-dimensional shifts of finite type. A two-dimensional zeta function $\zeta^{0}(s)$, which generalizes the Artin-Mazur zeta function, was given by Lind for $\mathbb{Z}^{2}$-action $\phi$. In this paper, the $n$th-order zeta function $\zeta_{n}$ of $\phi$ on $\mathbb{Z}_{n\times \infty}$, $n\geq 1$, is studied first. The trace operator $\mathbf{T}_{n}$, which is the transition matrix for $x$-periodic patterns with period $n$ and height $2$, is rotationally symmetric. The rotational symmetry of $\mathbf{T}_{n}$ induces the reduced trace operator $\tau_{n}$ and $\zeta_{n}=\left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$. The zeta function $\zeta=\prod_{n=1}^{\infty} \left(\det\left(I-s^{n}\tau_{n}\right)\right)^{-1}$ in the $x$-direction is now a reciprocal of an infinite product of polynomials. The zeta function can be presented in the $y$-direction and in the coordinates of any unimodular transformation in $GL_{2}(\mathbb{Z})$. Therefore, there exists a family of zeta functions that are meromorphic extensions of the same analytic function $\zeta^{0}(s)$. The natural boundary of zeta functions is studied. The Taylor series for these zeta functions at the origin are equal with integer coefficients, yielding a family of identities, which are of interest in number theory. The method applies to thermodynamic zeta functions for the Ising model with finite range interactions.

Kundrecensioner och bloggar

Sök fler böcker:

Kunder som köpt denna bok har
även köpt:
Skotten i Köpenhamn :  ett reportage om
Uppgång och fall
Uppgång och fall
av Strömquist, Liv
Den allvarsamma leken
Den allvarsamma leken
av Söderberg, Hjalmar
Miniatyrmakaren
Miniatyrmakaren
av Burton, Jessie
Min mors självbiografi
Min mors självbiografi
av Kincaid, Jamaica