Denna webbshop är stängd för köp.
Klicka här för mer information

Weil-petersson Metric on the Universal Teichmuller Space
  • Bandtyp: Pocket
  • Språk: Engelska
  • Utgiven: 200607
  • Antal sidor: 119
  • Vikt i gram: 249
  • ISBN10:0821839365
  • ISBN13:9780821839362

Weil-petersson Metric on the Universal Teichmuller Space

(Pocket)
Beskrivning:

In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ - the Hilbert submanifold $T_{0}(1)$ - is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space.As an application, we derive Wolpert curvature formulas for the finite-dimensional Teichmuller spaces from the formulas for the universal Teichmuller space. We study in detail the Hilbert manifold structure on $T_{0}(1)$ and characterize points on $T_{0}(1)$ in terms of Bers and pre-Bers embeddings by proving that the Grunsky operators $B_{1}$ and $B_{4}$, associated with the points in $T_{0}(1)$ via conformal welding, are Hilbert-Schmidt.We define a 'universal Liouville action' - a real-valued function ${\mathbf S}_{1}$ on $T_{0}(1)$, and prove that it is a Kahler potential of the Weil-Petersson metric on $T_{0}(1)$.We also prove that ${\mathbf S}_{1}$ is $-\tfrac{1}{12\pi}$ times the logarithm of the Fredholm determinant of associated quasi-circle, which generalizes classical results of Schiffer and Hawley. We define the universal period mapping $\hat{\mathcal{P}}: T(1)\rightarrow\mathcal{B}(\ell^{2})$ of $T(1)$ into the Banach space of bounded operators on the Hilbert space $\ell^{2}$, prove that $\hat{\mathcal{P}}$ is a holomorphic mapping of Banach manifolds, and show that $\hat{\mathcal{P}}$ coincides with the period mapping introduced by Kurillov and Yuriev and Nag and Sullivan.We prove that the restriction of $\hat{\mathcal{P}}$ to $T_{0}(1)$ is an inclusion of $T_{0}(1)$ into the Segal-Wilson universal Grassmannian, which is a holomorphic mapping of Hilbert manifolds. We also prove that the image of the topological group $S$ of symmetric homeomorphisms of $S^{1}$ under the mapping $\hat{\mathcal{P}}$ consists of compact operators on $\ell^{2}$.The results of this memoir were presented in our e-prints: Weil-Petersson metric on the universal Teichmuller space I. Curvature properties and Chern forms, arXiv:math.CV/0312172 (2003), and Weil-Petersson metric on the universal Teichmuller space II. Kahler potential and period mapping, arXiv:math.CV/0406408 (2004).

Kundrecensioner och bloggar

Sök fler böcker:

Kunder som köpt denna bok har
även köpt:
Skotten i Köpenhamn :  ett reportage om
Ibland mår jag inte så bra
Ibland mår jag inte så bra
av Lindgren, Therése
Uppgång och fall
Uppgång och fall
av Strömquist, Liv
Miniatyrmakaren
Miniatyrmakaren
av Burton, Jessie
Min mors självbiografi
Min mors självbiografi
av Kincaid, Jamaica