During the last two decades the theory of abstract Volterra equations has under gone rapid development. To a large extent this was due to the applications of this theory to problems in mathematical physics, such as viscoelasticity, heat conduc tion…
The Navier-Stokes equations - modeling the motion of viscous, incompressible Newtonian fluids - have been capturing the attention of an increasing number of mathematicians over the years and has now become one of the most intensely studied subjects…
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account cov…
1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal o…
"Elegantly written, with obvious appreciation for fine points of higher mathematics...most notable is [the] author's effort to weave classical probability theory into [a] quantum framework." - The American Mathematical Monthly "This is an excellent…
This book deals with the symbiotic relationship between I Quarkonial decompositions of functions, on the one hand, and II Sharp inequalities and embeddings in function spaces, III Fractal elliptic operators, IV Regularity theory for some semi-linear…
This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning…
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed complet…
In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to…
From the reviews: "The text is almost self-contained and requires only an elementary knowledge of probability theory at the graduate level. The book under review is recommended to mathematicians, physicists and graduate students interested in mathem…
Schroedinger Equations and Diffusion Theory addresses the question "What is the Schroedinger equation?" in terms of diffusion processes, and shows that the Schroedinger equation and diffusion equations in duality are equivalent. In turn, Schroedinge…
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and…
This book is intended to be an introduction to the fascinating theory ofgeneralized polygons for both the graduate student and the specialized researcher in the field. It gathers together a lot of basic properties (some of which are usually referred…
This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results stress explicit analytic methods. Coverage includes the…
If we had to formulate in one sentence what this book is about, it might be "How partial differential equations can help to understand heat explosion, tumor growth or evolution of biological species". These and many other applications are described…
The present. volume is the second volume of the book "Singularities of Differentiable Maps" by V.1. Arnold, A. N. Varchenko and S. M. Gusein-Zade. The first volume, subtitled "Classification of critical points, caustics and wave fronts", was publish…
This book systematically treats the theory of groups generated by a conjugacy class of subgroups, satisfying certain generational properties on pairs of subgroups. For finite groups, this theory has been developed in the 1970s mainly by M. Aschbache…
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a se…
The theory of elliptic partial differential equations has undergone an important development over the last two centuries. Together with electrostatics, heat and mass diffusion, hydrodynamics and many other applications, it has become one of the most…
s s T h is b o ok de als w ith the the o ry of func tion s p ac e s of t y p e B and F as it s t ands pq pq at the end of the eigh ties. These t w o scales of spaces co v er man y w ell- kno w n s paces of functions a nd distributions suc h as H.. o…
This book is the continuation of the "Theory of Function Spaces" trilogy, published by the same author in this series and now part of classic literature in the area of function spaces. It can be regarded as a supplement to these volumes and as an ac…
The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down…
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) calle…